CHANGES IN SYSTEMIC AND REGIONAL HEMODYNAMICS DURING INTENSIVE MUSCULAR ACTIVITY (EXPERIMENTAL STUDY)

Author:

Balykin MORCID,Karkobatov HORCID,Shidakov YuORCID,Antipov IORCID

Abstract

Aim. The article deals with evaluating the changes in minute volume of blood circulation and the features of regional hemodynamics in somatic and visceral organs during intensive muscular activity. Materials and methods. Studies were conducted on outbred laboratory dogs (n = 16). At rest and at maximum physical exertion (running on a treadmill to failure), oxygen consumption (VO2), blood gas composition, the minute volume of respiration (VE) and blood circulation (Q) (according to Fick) were determined. The volumetric blood flow velocity in skeletal muscles and visceral organs (qt) was determined by introducing iodine-131-labeled microspheres into the heart cavity. Results. At maximum physical exertion, VO2 significantly increases by 11.7 times, Q – by 5.3 times. The volumetric blood flow velocity significantly (P ≤ 0.001) increases in locomotor (6.2–7.5 times) and respiratory (6.5–8.0 times) muscles. In postural muscles, blood flow does not change. In the myocardium, blood flow increases by 4.5 times and corresponds to changes in cardiac performance. In the adrenal gland, blood flow increases by 1.6 times (p ≤ 0.001), in the thyroid gland, it remains unchanged. In the kidney, blood flow decreases by 21.5%, in the liver by 23.0%, with an increase in the arterial fraction by 56.3% of organs. In organs of the splanchnic region (spleen, organs of the gastrointestinal tract), the volumetric blood flow velocity decreases by 44.9% (P ≤ 0.001). Conclusion. During extreme physical exertion, most of the cardiac output is distributed into the locomotor, respiratory muscles and organs involved in muscle activity, while reducing the volumetric blood flow in the visceral organs. It is postulated that against the background of high oxygen demand and arterial hypoxemia in the somatic and visceral organs, there are competitive relationships for blood flow and the prerequisites for the development of total tissue hypoxia.

Publisher

FSAEIHE South Ural State University (National Research University)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3