A PRIORI ESTIMATES FOR DERIVATIVE SOLUTIONS OF ONE-DIMENSIONAL INHOMOGENEOUS HEAT CONDUCTION EQUATIONS WITH AN INTEGRAL LOAD IN THE MAIN PART

Author:

Boziev O.L., ,

Abstract

This article considers the second initial-boundary value problem with homogeneous boundary conditions for a one-dimensional modified heat equation. The modification consists in replacing the temperature-conductivity coefficient with an integral load. In our case, it has the form of a power function of the integral of the square of the modulus of the derivative of the solution of the equation with respect to the spatial variable. Equations with such a load are associated with some practically important parabolic equations with a power nonlinearity in the main part. This makes it possible to use previously found solutions of loaded problems to start the successive approximation to solutions of the nonlinear problems reduced to them. In this case, with respect to the original nonlinear equation, the loaded equation contains a weakened nonlinearity. Linearization of the loaded equation makes it possible to find its approximate solution. The article considers three cases of integral load: the square of the norm of the derivative of the solution with respect to x in the space L2 in natural, inverse to natural, and integer negative powers. The corresponding a priori inequalities are established. Their right sides are used to pass to linearized equations. Examples of linearization of heat conduction equations with an integral load in the main part are given.

Publisher

FSAEIHE South Ural State University (National Research University)

Subject

General Medicine

Reference16 articles.

1. 1. Bernstain S. N. Ob odnom klasse funktsional'nykh uravneniy s chastnymi proizvodnymi (Sur Une Classe D'equations Fonctionnelles aux Derivees Partielles). Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 1940, Vol. 4, Iss. 1, pp. 17-26. (in Russ.).

2. 2. Jangveladze T.A. Ob odnom nelineynom integro-differentsial'nom uravnenii parabolicheskogo tipa (A Nonlinear Integro-Differential Equation of Parabolic Type). Differ. Uravn., 1985, Vol. 21, no. 1, pp. 41-46. (in Russ.).

3. 3. Laptev G.I. Kvazilineynyye parabolicheskiye uravneniya vtorogo poryadka s integral'nymi koeffitsiyentami (Second-Order Quasilinear Parabolic Equations with Integral Coefficients). Dokl. Akad. nauk SSSR, 1987, Vol. 293, no. 2, pp. 306-309. (in Russ.).

4. 4. Dawidowski L. The Quasilinear Parabolic Kirchhoff Equation, Open Math., 2017, Vol. 15, Iss. 1, pp. 382-392. DOI: 10.1515/math-2017-0036.

5. 5. Matsuyama T., Ruzhansky M. On the Gevrey Well-Posedness of the Kirchhoff Equation. arXiv:1508.05305 [math.AP]. DOI: 10.48550/arXiv.1508.05305

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3