Possibi¬lities of Using Neural Network Incremental Learning

Author:

Abramova E.S., ,Orlov A.A.,Makarov K.V.

Abstract

The present time is characterized by unprecedented growth in the volume of information flows. Information processing underlies the solution of many practical problems. The intelligent infor-mation systems applications range is extremely extensive: from managing continuous technological processes in real-time to solving commercial and administrative problems. Intelligent information systems should have such a main property, as the ability to quickly process dynamical incoming da-ta in real-time. Also, intelligent information systems should be extracting knowledge from previously solved problems. Incremental neural network training has become one of the topical issues in ma-chine learning in recent years. Compared to traditional machine learning, incremental learning al-lows assimilating new knowledge that comes in gradually and preserving old knowledge gained from previous tasks. Such training should be useful in intelligent systems where data flows dynamically. Aim. Consider the concepts, problems, and methods of incremental neural network training, as well as assess the possibility of using it in intelligent systems development. Materials and methods. The idea of incremental learning, obtained in the analysis of a person's learning during his life, is consid-ered. The terms used in the literature to describe incremental learning are presented. The obstacles that arise in achieving the goal of incremental learning are described. A description of three scenari-os of incremental learning, among which class-incremental learning is distinguished, is given. An analysis of the methods of incremental learning, grouped into a family of techniques by the solution of the catastrophic forgetting problem, is given. The possibilities offered by incremental learning ver-sus traditional machine learning are presented. Results. The article attempts to assess the current state and the possibility of using incremental neural network learning, to identify differences from traditional machine learning. Conclusion. Incremental learning is useful for future intelligent sys-tems, as it allows to maintain existing knowledge in the process of updating, avoid learning from scratch, and dynamically adjust the model's ability to learn according to new data available.

Publisher

FSAEIHE South Ural State University (National Research University)

Subject

Psychiatry and Mental health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Training of Convolutional Neural Networks for Recognition of Marking Symbols;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

2. Application of an Incremental Method of Neural Network Training for Recognition of Symbols on Railway Wheels;2023 Dynamics of Systems, Mechanisms and Machines (Dynamics);2023-11-14

3. Development and research of a neural network alternate incremental learning algorithm;Computer Optics;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3