AN EFFICIENT FAULT TOLERANT CLUSTERING FOR SCIENTIFIC WORKFLOW

Author:

A Bharanidharan1,RAJ Jahashri1,K Srinivasan1,V Tarun1

Affiliation:

1. Sri Ramakrishna Engineering College

Abstract

An effective method for the reduction of execution overhead and for improving the computational granularity of scientific workflow tasks that are executing on distributed resources is Task clustering. A job is composed of many tasks and may have a higher risk of suffering from failures than in executing a single task job. In this paper, we direct a hypothetical investigation of the effect of transient failures on the runtime execution of logical work process executions .This system proposes a maximum likelihood estimation-based parameter algorithm which is used for a general task failure modeling framework to model the workflow performance. In this paper, the system proposed here is Dynamic Balanced clustering method which combines the methods of vertical clustering, horizontal clustering and dynamic clustering to reduce the execution overhead for the scientific workflow task execution.

Publisher

IJAICT India Publications

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3