A Novel Design of Electric Vehicle Battery Charger using Modified Bridgeless Landsman Converter

Author:

Katta Pradeep1,Ovaiz A Mohammed1,K Prabaakaran1,M Priya1,K Keerthana1,J Preethi1

Affiliation:

1. Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, India

Abstract

This paper includes the design and implementation of a new electric vehicle charger, which is powered using a battery consisting of an enhanced power factor frontend. The traditional diode that is at the source end is omitted in the proposed design using the conventional power factor improvement inverter. The inverter has its parameters closer to the configuration of a basic push pull converter. The above-mentioned converter works with the phenomenon of electric vehicle battery control. Two modes of operation are incorporated out of which the former one is constant current mode and the latter is constant voltage mode. To obtain the desired regulation of DC voltage at the point of coupling and also to improve the operational efficiency to unity power factor, the proposed Landsman converter is operated using a single sensed individual. This method yields improved power quality, less harmonics in comparison with a conventional one. A prototype is constructed and tested by charging a 48V electric vehicle battery of 100Ah size under the transients in input voltage to display the proposed charger to an IEC61000-32 standard. All the cases are said to be satisfied by performance of the charger.

Publisher

IJAICT India Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3