A Survey on Machine Learning Algorithms for Vision State Classification and Prediction Through Electroencephalogram (EEG) Signal
-
Published:2020-12-30
Issue:
Volume:
Page:426-429
-
ISSN:
-
Container-title:Innovations in Information and Communication Technology Series
-
language:en
-
Short-container-title:IICT
Author:
A Devipriya1, D Brindha2, A Kousalya3
Affiliation:
1. KPR Institute of Engineering and Technology, India 2. Coimbatore Institute of Engineering and Technology, India 3. Sri Krishna College of Engineering and Technology, India
Abstract
Eye state ID is a sort of basic time-arrangement grouping issue in which it is additionally a problem area in the late exploration. Electroencephalography (EEG) is broadly utilized in a vision state in order to recognize people perception form. Past examination was approved possibility of AI & measurable methodologies of EEG vision state arrangement. This research means to propose novel methodology for EEG vision state distinguishing proof utilizing Gradual Characteristic Learning (GCL) in light of neural organizations. GCL is a novel AI methodology which bit by bit imports and prepares includes individually. Past examinations have confirmed that such a methodology is appropriate for settling various example acknowledgment issues. Nonetheless, in these past works, little examination on GCL zeroed in its application to temporal-arrangement issues. Thusly, it is as yet unclear if GCL will be utilized for adapting the temporal-arrangement issues like EEG vision state characterization. Trial brings about this examination shows that, with appropriate element extraction and highlight requesting, GCL cannot just productively adapt to time-arrangement order issues, yet additionally display better grouping execution as far as characterization mistake rates in correlation with ordinary and some different methodologies. Vision state classification is performed and discussed with KNN classification and accuracy is enriched finally discussed the vision state classification with ensemble machine learning model.
Publisher
IJAICT India Publications
Reference25 articles.
1. P. A. Estévez, C. M. Held, C. A. Holzmann, C. A. Perez, J. P. Pérez, J. Heiss, M. Garrido, and P. Peirano, “Polysomnographic pattern recognition for automated classification of sleep-waking states in infants,” Medical & Biological Engineering & Computing, vol. 40, no. 1, pp. 105–113, Jan. 2002. 2. M. V. M. Yeo, X. Li, K. Shen, and E. P. V. Wilder-Smith, “Can SVM be used for automatic EEG detection of drowsiness during car driving?” Safety Science, vol. 47, no. 1, pp. 115–124, 2009. 3. K. Polat and S. Güneş, “Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 1017–1026, 2007 4. K. Sadatnezhad, R. Boostani, and A. Ghanizadeh, “Classification of BMD and ADHD patients using their EEG signals,” Expert Systems with Applications, vol. 38, no. 3, pp. 1956–1963, 2011. 5. N. Sulaiman, M. N. Taib, S. Lias, Z. H. Murat, S. A. M. Aris, and N. H. A. Hamid, “Novel methods for stress features identification using EEG signals,” International Journal of Simulation: Systems, Science and Technology, vol. 12, no. 1, pp. 27–33, 2011.
|
|