Affiliation:
1. University of Copenhagen
Abstract
This month’s column is Part 2 of a contribution from my daughter Glenna, who recently completed her PhD studies in Environmental Science from the University of Copenhagen in Denmark. Her article explores the current landscape of global critical raw materials (CRM) trends in research and the applications of atomic spectroscopy (AS), including inductively coupled plasma–mass spectrometry (ICP-MS), inductively coupled plasma–optical emission spectrometry (ICP-OES), and X-ray analytical techniques in their identification of diverse industrial and environmental media, which have been essential in method validation and quantification of CRMs in complex matrices presenting high risks of interference. Some important examples to be presented include rare earth elements (REEs) in water leaching purification (WLP) residues that co-occur with radioactive materials; REEs and other metals in acid mine drainage (AMD) environments; REEs in coal combustion (fly ash) residues; arsenic (As) from groundwater treatment sediment; and platinum-group elements (PGEs) from sewage sludge. The article also classifies the different techniques in use at each stage of the CRM recovery train, investigates present challenges to each analytical method, and discusses the problem-solving tools used.
Publisher
Multimedia Pharma Sciences, LLC
Reference38 articles.
1. Handbook of ICP-QQQ Applications Using the Agilent 880 and 8900; 5th edition. (accessed 2023-03-12).
2. May, T.W.; Wiedmeyer, R.H.A Table of Polyatomic Interferences in ICP-MS. At. Spectrosc. 1998, 19 (5), 150–155. DOI: 10.46770/AS.1998.05.002
3. Amidi, A.; Razif, S. A. M.; Jabit, N. A.; Ariffin, K. S. 2022. Characterization of Rare Earth Elements (REE) from Industrial REE Waste Resources. Mater. Today: Proc. 2022, 66, 3140–3143. DOI: 10.1016/j.matpr.2022.07.464
4. Pérez-López, R.; Delgado, J.; Nieto, J. M. ; Márquez-García, B., Rare Earth Element Geochemistry of Sulphide Weathering in the São Domingos Mine Area (Iberian Pyrite Belt): A Proxy for Fluid–Rock Interaction and Ancient Mining Pollution. Chem. Geol. 2010, 276 (1–2), 29–40. DOI: 10.1016/j.chemgeo.2010.05.018
5. Pyrgaki, K.; Gemeni, V.; Karkalis, C.; Koukouzas, N.; Koutsovitis, P.; Petrounias, P., 2021. Geochemical Occurrence of Rare Earth Elements in Mining Waste and Mine Water: A Review. Minerals 2021, 11 (8), 860. DOI: 10.3390/min11080860