Identification and Classification of Degradation-Indicator Grass Species in a Desertified Steppe Based on HSI-UAV

Author:

Gao Xinchao1,Hao Fei2,Pi Weiqiang3,Zhu Xiangbing1,Zhang Tao1,Bi Yuge1,Zhang Yanbin1

Affiliation:

1. Mongolia Agricultural University

2. School of Mechanical and Electrical Engineering Hohhot Vocational College

3. School of Mechanical and Electrical Engineering Huzhou Vocational and Technical College

Abstract

The emergence and number of grassland degradation-indicator grass species are important in evaluating the extent of grassland degradation. Plant populations in desertified steppe are distributed randomly and at low density. Specifically, degradation-indicator grass species mainly exist as individuals, making spectrum-based identification difficult. Here, a low-altitude unmanned aerial vehicle (UAV) hyperspectral remote-sensing system was constructed to identify the typical degradation-indicator grass species of a desertified steppe in China. The ASI index (Artemisia frigida Willd. and Stipa breviflora Grisb. index) and classification rules were proposed and applied. We implemented a comprehensive application of amplified differences in spectral characteristics between vegetation communities and assigned plant senescence reflectance-index bands, using the characteristics of the plant populations under observation and UAV hyperspectral remote-sensing data, to solve the problems resulting from high similarity while identifying ground objects. Our results lay a solid foundation for monitoring and evaluating desertified steppe degradation-indicator grass species based on remote sensing.

Publisher

Multimedia Pharma Sciences, LLC

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3