Affiliation:
1. Harbin Engineering University
Abstract
Raman spectroscopy can characterize size-related properties of semiconductor nanomaterials according to the change of Raman shift. When limited to physical mechanisms, it is often difficult to predict the size-dependent Raman shift of semiconductor nanomaterials. To predict the size-dependent Raman shift more accurately and efficiently, a simple and effective method was created, demonstrated, and achieved via the deep learning model. The deep learning model is implemented by multi-layer perceptron. For size-dependent Raman shifts of three common semiconductor nanomaterials (InP, Si, CeO2), the prediction error was 1.47%, 1.18%, and 0.58%, respectively. The research has practical value in material characterization and related engineering applications, where physical mechanisms are not the focus and building predictive models quickly is key.
Publisher
Multimedia Pharma Sciences, LLC
Subject
Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献