Anomalous Retention Prediction Using Modelling Software in Gradient Reversed-Phase Liquid Chromatography: Why it Can Occur and How to Prevent It

Author:

Field Jennifer K.1,Euerby Melvin R.1,Petersson Patrik2,Berry Stuart N.3,Hogbin James3,Paget Veronica3,McKoy Earl1,Wong Raymond1

Affiliation:

1. Shimadzu

2. Ferring Pharmaceuticals

3. ACD/Labs

Abstract

This article presents the benefits of screening column and mobile phase combinations that generate differing chromatographic selectivities in reversed-phase gradient ultrahigh-pressure liquid chromatographic (UHPLC) method development strategies. Photodiode array (PDA) and mass spectrophotometric (MS) detection was necessary to facilitate peak tracking or identification of components in the sample mixture to build retention models. Retention time prediction accuracies of < 0.3% were obtained from a two-dimensional gradient time vs. temperature model when the initial gradient conditions were maintained. However, anomalous retention predictions were observed when higher %B initial gradient conditions were employed. Polar analytes in the sample mixture that started to migrate down the column in the dwell volume of the UHPLC system produced inaccurate retention time predictions if an inappropriate dwell volume was used in the retention model. An iterative dwell volume estimation was demonstrated to generate more accurate retention time predictions than when a practically determined dwell volume was used. However, to obtain good predictions the analyst should endeavour to use initial chromatographic conditions that promote focusing of all analytes on top of the column (that is, retention factor > 10).

Publisher

Multimedia Pharma Sciences, LLC

Subject

Analytical Chemistry

Reference9 articles.

1. Euerby, M. R.; Fever, M.; Hulse, J.; et al. Maximization of Selectivity in Reversed-Phase Liquid Chromatographic Method Development Strategies. LCGC Eur. 2016, 29, 8–21.

2. Petersson, P.; Boateng, B. O.; Field, J. K.; Euerby, M. R. A Practical Approach to Modelling of Reversed-Phase Liquid Chromatographic Separations: Advantages, Principles, and Possible Pitfalls. LCGC Eur. 2018, 31, 120–143.

3. Petersson, P.; Munch, J.; Euerby, M. R.; et al. Adaption of Retention Models to Allow Optimisation of Peptides and Protein Separations. Chromatography Today 2014, 15–18.

4. EDQM, EurPh, Section 2.2.4.6 Chromatographic Separation Techniques, 7.0th Ed. (EDQM, Strasbourg, France).

5. Snyder, L. R.; Dolan, J. W. High Performance Gradient Elution: The Practical Application of the Liner-Solvent Strength Model; John Wiley & Sons, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3