Abstract
Stationary phase chemistry, polarity, and selectivity have been of ongoing interest since the inception of gas chromatography (GC) in the 1950s. In the early days when most analyses were performed on packed columns, there were hundreds of stationary phase materials available. Today, with modern capillary columns, most GC analyses are performed with a few stationary phases, with a wide array of choices for specialty applications. Stationary phases are often classified using the broad term polarity, with polar stationary phases recommended for separating polar analytes and nonpolar stationary phases recommended for nonpolar analytes. In this installment, we examine the idea of stationary phase polarity. We examine the assumptions inherent in the most popular stationary phase polarity evaluating systems—McReynolds constants and the polarity scale. We see that high polarity does not always mean greater retention or higher selectivity.
Publisher
Multimedia Pharma Sciences, LLC
Reference6 articles.
1. Snow, N.H. Stationary Phase Selectivity: The Chemistry Behind the Separation. LCGC North Am. 2018, 36 (11), 806–811.
2. Rohrschneider, L. Eine Methode zur Charakterisierung von Gas- chromatographischen Trennflüssigkeiten. J. Chromatogr. 1966, 22, 6–22.
3. McReynolds, W.O. J. Chromatogr. Sci. 1970, 8, 685–691.
4. Mondello L.; Ragonese C.; Sciarrone D.; et al. Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds Anal. Chem. 2011, 83, 7947– 7954.
5. Restek Corporation, Pro EZGC Software. (Accessed December 2022). https://ez.restek.com/proezgc.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献