Possibilities and Limitations of Aqueous Temperature Responsive Liquid Chromatography in Comprehensive 2D–LC

Author:

Lynen Frédéric1,Wicht Kristina1,Kajtazi Ardiana1,Bandini Elena1,de Villiers André2,Spileers Gaëlle1,Rahmani Turaj1,Baert Mathijs1,Ampe Adriaan1,Veenhoven Jonas1

Affiliation:

1. Ghent University

2. University of Stellenbosch

Abstract

In theory, comprehensive two-dimensional liquid chromatography (2D-LC) allows for significant enhanced peak capacity compared to one-dimensional high performance LC (1D-HPLC). However, reaching such a separation performance while also obtaining robust, easily implementable, and sensitive methods proves challenging. Because it can hinder the broader use of 2D-LC, there is a need for developing easier, more trouble-free approaches that feature the benefits of LC×LC while not compromising with what can be done with 1D-HPLC. Commercial 2D-LC interfaces are based on two-position multiport valves composed of two loops, which are alternatingly used either to collect the effluent from the first dimension (1D), or to inject their content to the second dimension (2D). This design implies that if large sampling volumes transferred to the second column need to be avoided, a comparatively (much) higher flow rate and broader column i.d. is required for the second column. However, doing so can lead to a loss in sensitivity because of dilution and impractical analytical chromatography as a result of the high flow rates involved. In most LC×LC column combinations, this problem is exacerbated thanks to the high eluotropic strength of transferred loop volumes. However, when the elution strength of the transferred solvent is very small, refocusing the analytes can be obtained, which allows the user to overcome such issues. For example, this is the case when a purely aqueous separation mode is combined with reversed-phase LC (RPLC) in the 1D and 2D, respectively. Temperature responsive LC (TRLC), which is an emerging LC mode requiring only water as the mobile phase and whereby retention is controlled via temperature only, is promising in this context. In this second installment about TRLC, we illustrate the unique benefits of the combination of this separation mode with RPLC in comprehensive 2D-LC. The potential of the approach is shown through the analysis of representative standard mixtures, active pharmaceutical ingredients, synthetic impurities and phenolics in natural products.

Publisher

Multimedia Pharma Sciences, LLC

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3