Formulation development and characterization of quercetin loaded poly caprolactone nanoparticles for tumors

Author:

Kashif MuhammadORCID,Ali MuradORCID,Bushra ,Naz SairaORCID,Amir JalalORCID,Murad ShafaqORCID,Atif MuhammadORCID,Khattak Osama AliORCID,Ullah SaifORCID,Aleena SeeqalORCID,Khan NaqashORCID,Khan Muhammad YounisORCID

Abstract

Cancer is a formidable health obstacle, characterized by its bleak outlook. Considerable scientific investigation has shed light on the capacity to modify the dispersion of anticancer medications at various levels within tissues and cells by enclosing them within submicronic colloidal systems, often known as nanoparticles. This approach is based on the goal of enhancing the therapeutic effectiveness of these medications while minimizing adverse effects on the entire body. Moreover, the theragnostic characteristics of these nanoparticles are widely acknowledged, hence enhancing their therapeutic potential. The current study is centered on exploring the potential anti-tumor effects of quercetin by utilizing its antioxidant capabilities. The quercetin nanoparticles are synthesized with great precision utilizing the nanoprecipitation approach, in which poly(caprolactone) is utilized as the polymer matrix. Following synthesis, the nanoparticles are extracted for further analysis. Further attempts are undertaken to enhance the drug loading process, and the resultant nanoparticles undergo a thorough analysis, including the examination of their morphology using scanning electron microscopy, and the evaluation of drug-polymer interactions using Fourier transform infrared spectroscopy and differential scanning calorimetry. The remarkable efficacy of quercetin's envelopment can be attributed to its lipophilic nature, reaching a maximum of 81%. The utilization of scanning electron microscopy allows for the observation of nanoparticles with varying forms. Conversely, the absence of noticeable interactions in Fourier-transform infrared analysis indicates the stability of poly(caprolactone) nanoparticles loaded with quercetin.

Publisher

Lepidus Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3