Unleashing real-time analytics: A comparative study of in-memory computing vs. traditional disk-based systems

Author:

Levin Semen M.ORCID

Abstract

The article presents a comprehensive study evaluating the performance differences between in-memory computing (IMC) and traditional disk-based database systems, specifically focusing on Redis and PostgreSQL. Given the escalating demands for real-time data analytics across various sectors, the research delves into the comparative efficiency of these two data management paradigms in processing large datasets. Utilizing a synthetic dataset of 23.6 million records, we orchestrated a series of data manipulation tasks, including aggregation, table joins, and filtering operations, to simulate real-world data analytics scenarios. The experiment, conducted on a high-performance computing setup, revealed that Redis significantly outperformed PostgreSQL in all tested operations, showcasing the inherent advantages of IMC in terms of speed and efficiency. Data aggregation tasks saw Redis completing the process up to ten times faster than PostgreSQL. Similarly, table joining, and data filtering tasks were executed more swiftly on Redis, emphasizing IMC's potential to facilitate instantaneous data analytics. These findings underscore the pivotal role of IMC technologies like Redis in empowering organizations to harness real-time insights from big data, a critical capability in today's fast-paced business environment. The study further discusses the implications of adopting IMC over traditional systems, considering aspects such as cost, integration challenges, and the importance of skill development for IT teams. Concluding with strategic recommendations, the article advocates for a nuanced approach to incorporating IMC technologies, highlighting their transformative potential while acknowledging the need for balanced investment and operational planning.

Publisher

Lepidus Tecnologia

Reference22 articles.

1. Al-Mohannadi, A., Al-Maadeed, S., Elharrouss, O., & Sadasivuni, K. K. (2021). Encoder-decoder architecture for ultrasound IMC segmentation and cIMT measurement. Sensors, 21(20), 6839. https://doi.org/10.3390/s21206839

2. Amrouch, H., Du, N., Gebregiorgis, A., Hamdioui, S., & Polian, I. (2021). Towards reliable in-memory computing: From emerging devices to post-von-neumann architectures. In: 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC), IEEE, Singapore, 1-6 p. https://doi.org/10.1109/VLSI-SoC53125.2021.9606966

3. Bach, T., Andrzejak, A., Seo, C., Bierstedt, C., Lemke, C., Ritter, D., Hwang, D. W., Sheshi, E., Schabernack, F., Renkes, F., Gaumnitz, G., Martens, J., Hoemke, L., Felderer, M., Rudolf, M., Jambigi, N., May, N., Joy, R., Scheja, R., Schwedes, S., Seibel, S., Seifert, S., Haas, S., Kraft, S., & Lehner, W. (2022). Testing very large database management systems: The case of SAP HANA. Datenbank-Spektrum, 22(3), 195-215. https://doi.org/10.1007/s13222-022-00426-x

4. Daase, B., Bollmeier, L. J., Benson, L., & Rabl, T. (2021). Maximizing persistent memory bandwidth utilization for OLAP workloads. In: Proceedings of the 2021 International Conference on Management of Data, 339-351 p. https://doi.org/10.1145/3448016.3457292

5. Flocchini, P., Prencipe, G., & Santoro, N. (2022). Distributed computing by oblivious mobile robots. In: Synthesis Lectures on Distributed Computing Theory, Synthesis Collection of Technology, Springer, Nature, 169 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3