Laboratory investigation of soil-aggregate-cement mixture

Author:

Rijo Valoura LuízaORCID,Da Silva Matheus FranciscoORCID,Furlan Ana PaulaORCID

Abstract

Cement stabilization improves physical and mechanical properties of geotechnical materials. However, numerous combinations of geotechnical materials and cement hinder to establish a pattern of mechanical behavior of cement-stabilized materials. Thus, this study aims to evaluate the mechanical behavior of soil-aggregate-cement mixtures (SAC) using high early-strength cement (HE), to contribute to dosage aspects and to ascertain their recommendation as base and/or subbase layers in heavy and very heavy volume roads. For this, SAC mixtures composed of different proportions of soil and aggregate (20:80 and 30:70) with 3, 5 and 7% of cement were produced and cured at different times (0, 7 and 28 days). Mechanical properties were assessed in terms of unconfined compressive strength (UCS), indirect tensile strength (ITS) and resilient modulus by repeated load triaxial test ( ) and by dynamic indirect tensile test ( ). A cement dosage study compared compressive and tensile strengths with acting stresses computed by mechanistic analysis of hypothetical pavements. This same procedure was also used for verifying the possibility of anticipating construction phases and reducing the traffic opening time, in this case a SAC mixture using Portland composite cement (PCC) was also evaluated. Results indicated that SAC-20:80 presented better mechanical behavior than SAC-30:70. Also, the cement content that led to the best mechanical behavior was 5%. All SAC mixtures with 5% HE had higher strength than the acting stresses interval computed for hypothetical pavements. SAC mixtures reached, at 7 and 3 days of curing, respectively, 80% and 60% of 28-days strength, which is the control parameter of Sao Paulo-DOT instructions for SAC. Findings indicated that, due to their good mechanical behavior, SAC mixtures are viable alternatives as layers in heavy and very heavy traffic pavements. Additionally, SAC’s high strengths at earlier curing times have shown their potential to reduce construction time.

Publisher

Programa de Pos Graduacao em Arquitetura e Urbanismo

Reference50 articles.

1. AASHTO (1999) AASHTO T 307-99: Standard method of test for determining the resilient modulus of soils and aggregate materials. Washington, US: American Association of State Highway and Transportation Officials.

2. State-of-the-art report on soil-cement

3. Experimental study on stabilization of a low plasticity clayey soil with cement/lime

4. ABNT-(2012) Norma NBR-1202: Solo-cimento – ensaio de compactação. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

5. ABNT-(2016) Norma NBR-7182: Solo – ensaio de compactação. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3