Factors related to highway crash severity in Brazil through a multinomial logistic regression model

Author:

Franceschi LucasORCID,Kaesemodel LucianoORCID,Do Carmo Comparsi de Vargas VeraORCID,Konrath Andréa Cristina,Nakamura Luiz RicardoORCID,Gentil Ramires Thiago,Belleza Maciel Barreto Camila,Mattar Valente Amir

Abstract

Reducing the number of deaths by road crashes is an important priority for many countries around the world. Although focusing on the occurrence of crashes can provide safety policies that help reduce its numbers, studying their severity can provide different measures that may help further reduce the number of deaths by focusing on the most severe problems first. In this paper, a multinomial logistic regression model is fitted to nationwide highway crash data in Brazil from 2017 to 2019 to identify and estimate the associated factors to crash severity. Severity is classified as without injury, with injured victims or with fatal victims. Amongst other observations, results indicate that pedestrian involvement in highway crashes increase dramatically their severity. Also, conditions that favor greater speeds (clear weather, times when there are fewer vehicles on the road) are also related to an increase in crash severity, pointing to a proportional relation with traffic fluidity. Moreover, some observed limitations on the data may indicate that Brazil would benefit greatly from national crash records standards and unified databases, especially crossmatching crash reports with health data.

Publisher

Programa de Pos Graduacao em Arquitetura e Urbanismo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3