Previsão de velocidades de tráfego com rede neural LSTM encoder-decoder

Author:

Zechin Douglas,Basso do Amaral Matheus,Bettella Cybis Helena Beatriz

Abstract

Este artigo tem como objetivo propor uma modelo de previsão de velocidades para um trecho de rodovia na cidade de Porto Alegre, que apresenta congestionamentos diariamente por conta de gargalos. Para realizar as previsões foram utilizados dados de tráfego e variáveis ambientais, como intensidade de chuva, acidentes e eventos atípicos. Propôs-se então um modelo de rede neural com arquitetura encoder-decoder e camadas long short-term memory (LSTM), que possuem a característica de estabelecer relações de longa dependência temporal entre as variáveis de entrada, sendo pertinentes para aplicações na área de Transportes. Como contribuições adicionais, avaliou-se a qualidade das previsões para diferentes horizontes de predição e regimes de tráfego, e comparou-se a capacidade e as curvas de probabilidade de breakdown calculadas com dados de campo e previstos. A metodologia apresentou desempenho satisfatório com base em ambos os critérios, sendo capaz de fazer boas previsões mesmo em situações críticas de tráfego.

Publisher

Programa de Pos Graduacao em Arquitetura e Urbanismo

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3