DEVELOPMENT OF OPTIMAL TECHNOLOGICAL PARAMETERS FOR PLASMA COATING DEPOSITION

Author:

Hlushkova D.B.,Volchuk V.M.,Demchenko S.V.,Polyansky P.M.

Abstract

This paper considers using ion-plasma spraying of mold surfaces. This makes it possible to replace scarce and expensive tungsten-containing steels with other materials. 4Х5МФС and 5ХНМ steel grades were chosen as materials for copper alloy die-casting molds in this work. The choice of these steel grades is due to the fact that these steels do not contain tungsten due to its sharply increased scarcity and limited molybdenum content, and they also meet the requirements for the substrate material on which the titanium nitride coating is applied. Coatings were applied to samples for laboratory tests and die-casting mold parts by the condensation method with ion bombardment. Titanium nitride is applied at different partial nitrogen pressures – from 310-3 to 1 Pa to determine the required nitrogen pressure, which ensures that the working surfaces of mold parts receive coatings with the best performance haracteristics. The coatings obtained at different nitrogen pressures differ in the amount and size of the droplet phase. The largest amount of the droplet phase containing α-Ti is observed in coatings obtained at nitrogen pressures of 310-3, 310-2 Pa. An increase in nitrogen pressure (410-1, 1 Pa) significantly reduces the level of microdistortions of the crystal lattice in the coating, and its plasticity increases. In this regard, the coating's brittleness is reduced at a sufficiently high hardness. The titanium nitride coating obtained at a nitrogen pressure of 1 Pa is the most effective in protecting the working surfaces of mold parts from destruction. Laboratory tests have shown that the titanium nitride coating applied under optimal process parameters increases the corrosion resistance of mold parts to which it is applied by 3 times and the scale resistance by 2–4 times.

Publisher

Problems of Atomic Science and Technology

Reference19 articles.

1. L.I. Gladkikh, S.V. Malykhyn, A.T. Pugache, O.M. Reshetnyak, D.B. Glushkova, S.S. D'Yachenko, G.P. Kovtun. Residual Stresses and Structure of Titanium and Chromium Nitride Coatings Obtained by a Method of an Ion-Plasma-Enhanced Deposition // Metallofizika i Noveishie Tekhnologii. 2003, N 6(25), p. 763-776 (in Russian).

2. E.I. Tsyvirko, A.A. Pedash. Grinding the structure of internal surfaces of cooling parts, VMD // Visnyk dvizhnoboduvaniya. 2010, N 1, p. 99-103 (in Ukrainian).

3. D.B. Hlushkova, V.A. Bagrov, S.V. Demchenko, V.M. Volchuk, O.V. Kalinin, N.E. Kalinina. Structure and properties of powder gas-plasma coatings based on nickel // Problems of Atomic Science and Technology. 2022, N 4(140), p. 125-130; https://doi.org/10.46813/2022-140-125

4. V.S. Vahrusheva, D.B. Hlushkova, V.M. Volchuk, T.V. Nosova, S.I. Mamhur, N.I. Tsokur, V.A. Bagrov, S.V. Demchenko, Yu.V. Ryzhkov, V.O. Scrypnikov. Increasing the corrosion resistance of heat-resistant alloys for parts of power equipment // Problems of Atomic Science and Technology. 2022, N 4(140), p. 137-140; https://doi.org/10.46813/2022-140-137

5. O.M. Vynogradov. Reduction of costs for foundry production // Casting of Ukraine. 2005, N 3, p. 5-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3