ASSESSMENT OF THE CORROSION RESISTANCE OF THE MAIN ALTERNATIVE MATERIALS FOR LIGHT WATER REACTORS TOLERANT FUEL ROD CLADDING
Author:
Zuyok Valeriy,Rud Roman,Tretyakov Mykhaylo,Rud Nataliya,Kushtym Yana,Dykyy Ivan,Shevchenko Igor,Rostova Hanna,Shtefan Viktoriia
Abstract
Basic materials for nuclear fuel rod claddings (Zr+1%Nb and E110 alloys), as well as alternative materials for tolerant fuel rod claddings (Cr18Ni10Тi steel and 42CrNiМo alloy), that are able to maximally prevent the development of severe accidents at nuclear power plants were tested in the high-temperature water vapor environment. A comparative analysis of the corrosion resistance of these materials is presented, as well as the results of similar tests by the world’s leading scientists. Samples of 42CrNiМo alloy revealed the highest corrosion resistance at high temperatures in a water vapor environment among the alternative materials for the fuel rod cladding considered in the study. The corrosion resistance of this alloy at a temperature of 1200 °C is approximately 40 times higher than that of Cr18Ni10Тi steel and E110 alloy. The high-temperature corrosion rate of the 42CrNiМo alloy is comparable to the corrosion rate of the Fechral alloy. The hydrogen that would be released during the oxidation of the 42CrNiМo alloy claddings would be almost forty times less compared to the zirconium alloy under the conditions of severe design accidents associated with overheating of the core.
Publisher
Problems of Atomic Science and Technology
Subject
Music,Ecology, Evolution, Behavior and Systematics,History,General Medicine,Ophthalmology,General Medicine,Pharmaceutical Science,Political Science and International Relations,Sociology and Political Science,Political Science and International Relations,Sociology and Political Science,Sociology and Political Science,Plant Science
Reference30 articles.
1. M.I. Solonin, A.B. Alekseev, S.A. Averin, Yu.A. Burenkov, V.M. Chernov, B.K. Kardashev, V.P. Kondrat’ev, A.V. Kozlov, V.N. Rechitsky, S.N. Votinov. Cr-Ni alloys for fusion reactors // J. Nucl. Mater. 1998, v. 258-263, p. 1762-1766. 2. А.В. Ватулин, В.П. Кондратьев, В.Н. Речицкий и др. Исследование коррозионной и радиационной стойкости никель-хромового сплава «Бочвалой» // Металловедение и термическая обработка металлов. 2004, №11(593), с. 19-24. 3. Л.А. Карпюк, В.В. Новиков, Г.В. Кулаков, Ю.В. Коновалов, М.В. Леонтьева-Смирнова, А.А. Голубничий, С.И. Иванов, Ф.В. Макаров, А.В. Глебов. Сплав 42ХНМ и карбид кремния как материал оболочек твэлов, устойчивых к авариям // Атомная энергия. 2021, т. 130, №4, c. 211-215. 4. K. Fukuya, K. Fujii, H. Nishioka, Y. Kitsunai. Evolution of Microstructure and Microchemistry in Cold-worked 316 Stainless Steels under PWR Irradiation // J. Nucl. Sci. Technol. 2006, v. 43, №2, p. 159-173. 5. В.Г. Баранов, Ю.Г. Годин, А.В. Тенишев, А.В. Хлунов, В.В. Новиков. Ядерные топливные материалы. НИЯУ МИФИ. 2012, т. 7, 640 с.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|