STABILITY OF THIN QUASI-CRYSTALLINE Ti-Zr-Ni FILMS AND RELATED CRYSTALLINE PHASES UNDER LOW-ENERGY TRANSIENT PLASMA IRRADIATION

Author:

Malykhin S.V.,Kondratenko V.V.,Makhlai V.A.,Garkusha I.E.,Kopylets I.A.,Borisov Yu.S.,Herashchenko S.S.,Surovitskiy S.V.,Borisova S.S.

Abstract

The properties of Ti41Zr38.3Ni20.7 thin films under radiation-thermal action of hydrogen plasma with a surface heat load of 0.2 MJ/m2 was studied at the QSPA Kh-50 quasi-stationary plasma accelerator (NSC KIPT).The phase composition, structural state, and surface morphology were studied using X-ray diffraction and scanning electron microscopy. It was found that the quasicrystalline phase and related crystalline phases, the Laves phase, the α-solid solution, and the 2/1 phase of the Ti-Zr-Ni approximant crystal were stable under irradiation with up to 20 hydrogen plasma pulses. The phase composition did not change. It is shown that the changes in the coatings mainly manifest themselves as changes in the substructure of the observed phases. With an increase in the plasma exposure dose, the structure of the quasicrystalline icosahedral phase improves, and the size of the coherence regions increases. In the films consisting of crystalline phases, a partial phase transformation is observed with a redistribution of components between the 2/1 phase of the approximant crystal and the α-solid solution phase. It was found that thin films of the TiZr-Ni system containing a quasicrystalline icosahedral phase, irradiated with radiation-thermal plasma pulses, are less prone to cracking than coatings with crystalline phases of the same system.

Publisher

Problems of Atomic Science and Technology

Subject

Marketing,Strategy and Management,Economics and Econometrics,Finance,Accounting,Business and International Management,Management of Technology and Innovation,Business and International Management,Management of Technology and Innovation,Business and International Management,Marketing,Management Information Systems,Physiology (medical),Orthopedics and Sports Medicine,Animal Science and Zoology,Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering,History,Cultural Studies,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3