THE ROLE OF HIGHER MOMENTS ON THE DISTRIBUTION OF PARTICLES IN THE SPACE OF IMPULSES AT CYCLOTRON RESONANCES

Author:

Buts V.A.,Kuzmin V.V.

Abstract

The results of the analysis of the dynamics of charged particles under conditions of cyclotron resonances in the field of an intense electromagnetic wave are presented. Particular attention is paid to regimes with dynamic chaos. It is shown that there are two qualitatively different regimes. The appearance of the first one is due to the overlap of nonlinear cyclotron resonances. The second mode is related to intermittency. The moments and spectra of each of these regimes are determined. It is shown that with an increase in the intensity of an external electromagnetic wave, the first regime appears at the beginning and only then the second regime appears. A characteristic feature of the second regime is intermittency. Steps appear on the time dynamics of pulses in the second mode. It is shown that the spectra in the second mode are narrower than in the first mode. A characteristic feature of the second regime (the regime with intermittency) is the fact that the higher moments turn out to be larger than the lower moments. In the first regime, the highest moments decrease rapidly. To find the particle momentum distribution function, the generalized Fokker-Planck equation was used. Solutions of this equation are written out for some important cases.

Publisher

Problems of Atomic Science and Technology

Subject

General Medicine,General Medicine,General Materials Science,General Medicine,General Earth and Planetary Sciences,General Environmental Science,Building and Construction,General Medicine,General Medicine,General Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3