PROTECTIVE VACUUM-ARC COATINGS ON ZIRCONIUM ALLOY FUEL CLADDING TO PREVENT CATASTROPHIC ACCIDENTS AT NUCLEAR REACTORS

Author:

Kuprin A.S.,Zuyok V.A.,Belous V.A.,Ovcharenko V.D.,Reshetnyak E.N.,Vasilenko R.L.,Tolmachova G.N.,Kushtym Ya.O.

Abstract

The processes of vacuum arc deposition of multicomponent coatings based on Cr, Ti, Al, Fe, Y, Si, and their nitrides with a thickness of 5…9 µm for the protection of zirconium alloy fuel rods were developed. The composition, structure, and mechanical properties of the coatings were determined by electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and nanoindentation. Comparative studies of the protective properties of coatings during high-temperature oxidation of Zr1Nb tubes were carried out. It was found that metal coatings with a high chromium content have excellent protective properties during tests under simulated accident conditions. They are simultaneously resistant to high-temperature corrosion in air at 750…1100 °C and in water steam during thermal cycling up to 1020 °C. Hard nitride coatings, which significantly strengthen the surface of the zirconium alloy and provide good protection against oxidation in air, are less effective in water steam under thermal cycling. The coatings and processes of synthesis developed at NSC KIPT can be useful for improving fuel cladding made of zirconium alloys of the world's leading nuclear fuel producer Westinghouse Electric Company.

Publisher

Problems of Atomic Science and Technology

Subject

Management of Technology and Innovation,General Materials Science,General Medicine,General Medicine,General Engineering,General Medicine,General Medicine,Applied Mathematics,General Earth and Planetary Sciences,General Engineering,General Environmental Science,General Economics, Econometrics and Finance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EFFECT OF THERMOCHEMICAL TREATMENT ON THE Zr-1%Nb ALLOY CHARACTERISTICS;Problems of Atomic Science and Technology;2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3