In vitro evaluation of grapevine endophytes, epiphytes and sap micro-organisms for potential use to control grapevine trunk disease pathogens

Author:

Blundell Robert,Arreguin Molly,Eskalen Akif

Abstract

Grapevine trunk diseases (GTDs) threaten the economic sustainability of viticulture, causing reductions of yield and quality of grapes. Biological control is a promising sustainable alternative to cultural and chemical methods to mitigate the effects of pathogens causing GTDs, including Botryosphaeria dieback, Eutypa dieback and Esca. This study aimed to identify naturally occurring potential biological control agents from grapevine sap, cane and pith tissues, and evaluate their in vitro antagonistic activity against selected fungal GTD pathogens. Bacterial and fungal isolates were preliminarily screened in dual culture assays to determine their antifungal activity against Neofusicoccum parvum and Eutypa lata. Among the fungal isolates, Trichoderma spp. inhibited mycelium growth of E. lata by up to 64% and of N. parvum by up to 73%, with overgrowth and growth cessation being the likely antagonistic mechanisms. Among the bacterial isolates, Bacillus spp. inhibited mycelium growth of E. lata by up to 20% and of N. parvum by up to 40%. Selected antagonistic isolates of Trichoderma, Bacillus and Aureobasidium spp. were subjected to further dual culture antifungal analyses against Diplodia seriata and Diaporthe ampelina, with Trichoderma isolates consistently causing the greatest inhibition. Volatile organic compound antifungal analyses showed that these Trichoderma isolates inhibited mycelium growth of N. parvum (20% inhibition), E. lata (61% inhibition) and Dia. ampelina (71% inhibition). Multilocus sequence analyses revealed that the Trichoderma isolates were most closely related to Trichoderma asperellum and Trichoderma hamatum. This study had identified grapevine sap as a novel source of potential biological control agents for control of GTDs. Further testing will be necessary to fully characterize modes of antagonism of these microorganisms, and assess their efficacy for pruning wound protection in planta.

Publisher

Firenze University Press

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3