Histopathological aspects of resistance in wheat to Puccinia triticina, induced by Pseudomonas protegens CHA0 and β-aminobutyric acid

Author:

Bellameche Fares,Jasim Mohammed Abbas,Mauch-Mani Brigitte,Mascher Fabio

Abstract

After perception of specific biotic or abiotic stimuli, such as root colonization by rhizobacteria or selected chemicals, plants can enhance their basal resistance against pathogens. Due to its likely sustainability, this induced resistance will be valuable for disease management in agriculture. This study examined resistance against wheat leaf rust (Puccinia triticina) induced by Pseudomonas protegens CHA0 (CHA0) and β-aminobutyric acid (BABA). Seed dressing with CHA0 reduced the number of sporulating pustules on leaves, and expression of resistance was visible as necrotic or chlorotic leaf flecks. Beneficial effect of CHA0 on wheat seedlings growth was observed in when they were challenged or not with leaf rust. BABA was tested at 10, 15 or 20 mM, and a dose-dependent reduction of leaf rust infections was observed with greatest protection at 20 mM. However, BABA treatment repressed plant growth at 20 mM. Balancing the BABA impact on plant growth and its protective capacity, 15 mM of the compound was selected as suitable to protect wheat seedlings against leaf rust, with the least impact on vegetative host growth. Histological aspects of the pathogen infection process was studied to understand mechanisms of behind the observed resistance. The pre-entry process was not affected by the two resistance inducers, but both treatments reduced fungus penetration and haustorium formation. Timing and amplitude of the resistance reactions were different after bacterial or chemical induction, leading to different levels of resistance. During fungal colonization of host tissues, high deposition of callose and accumulation of H2O2 in both CHA0- and BABA-treated plants indicated important contributions to resistance.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Firenze University Press

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3