Mechanisms of resistance to powdery mildew in cucumber

Author:

TEK Mumin IbrahimORCID,CALIS OzerORCID

Abstract

Podosphaera xanthii causes powdery mildew of cucumber, and is associated with significant yield and quality losses. Development of resistant or tolerant varieties is the most effective and eco-friendly strategy for powdery mildew management. An important host resistance mechanism is based on the recognition of conserved resistance genes, resulting in durable resistance. To determine powdery mildew resistance mechanisms in cucumber, total RNAs were isolated from the powdery mildew resistant cultivar Meltem, the tolerant line VT18, and the susceptible local variety Camlica. Expression levels of nine genes in these plants were analysed by Reverse Transcription Polymerase Chain Reaction (RT-PCR). The host reactions were assessed using microscope observations of stained specimens. Serine/threonine (STN7), transcription factor (WRKY22), serine/threonine-protein kinase (D6PKL1), and serine/threonine receptor kinase (NFP) genes were induced, as positive regulators in defence mechanisms against powdery mildew. Polygalacturonase Inhibitor (PGIP) did not express after P. xanthii inoculation of Camlica, resulting in susceptibility. After inoculation, callose synthase (CALLOSE) and cinnamyl alcohol dehydrogenase (CAD) gene expression levels were increased in resistant Meltem, but Hypersensitive Reaction (HR) and ROS formation were only linked in the tolerant VT18. Powdery mildew development was less in Meltem than in VT18, indicating that cell wall thickening and HR play separate roles in resistance to this disease.

Funder

Akdeniz Üniversitesi

Publisher

Firenze University Press

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3