Effects of sowing date on bolting and frost damage to autumn-sown sugar beet (Beta vulgaris L.) in temperate regions

Author:

Mohammadian RahimORCID,Rezaei Javad,Yosefabadi Valyollah

Abstract

Sugar beet is mostly cultivated in relatively cool regions of the temperate zones by sowing in spring, but in some Mediterranean areas with mild winters, the crop is sown in autumn. Due to global warming, autumn cultivation of sugar beet is gradually extending towards new areas that are still characterized by relatively cold winters. Seedling loss and bolting are two factors limiting the adoption of autumn sugar beet cultivation in new areas. The objectives of this study were to determine the effects of sowing date on (i) duration and rate of field emergence, (ii) phenological stages of sugar beet during early growth, (iii) quantitative traits of seedlings and (iv) bolting occurrence as well as frost killing of autumn-sown sugar beet. Field experiments were conducted in a randomized complete block design to determine the appropriate sowing date for autumn-sown sugar beet in 2017/18 and 2018/19 in the Karaj and Mashhad regions of Iran, which are both characterized by relatively cold winters. The experiment was conducted with a bolting-resistant cultivar and six sowing date treatments. The results showed that to reach plant growth stages of cotyledon, 2, 4, 6, 8, 10, 12, 14 and 16 leaves, 163, 200, 321, 418, 500, 600, 639, 700 and 757 growing degree days (GDD), respectively, were required. The average duration and speed of seedling emergence increased and decreased, respectively, with delay in sowing. The results suggest adjusting the sowing date of winter sugar beet so that when temperatures effective for bolting (6-8 °C) occur, the plant has already received about 300 to 400 GDD. At this time, the growth stage and the largest root diameter of sugar beet are approximately 4-6 leaves and 0.11-0.27 cm, respectively. After 14- to 16-leaf stage (≥700-750 GDD), the percentage of killed plants due to low temperatures were negligible. Although, the risk for frost losses is higher at 4- to 6-leaf stage (300-400 GDD), accepting higher losses is justified by a lower probability of bolting.

Publisher

Firenze University Press

Subject

Atmospheric Science,Agronomy and Crop Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3