Micrometeorological modeling and water consumption of tabasco pepper cultivated under greenhouse conditions

Author:

Weine Paulino Chaves Sérgio,Duarte Coelho Rubens,De Oliveira Costa Jéfferson,André Tapparo Sergio

Abstract

Micrometeorological variables of tabasco pepper cultivated under greenhouse and drip irrigated conditions have not been presented to date in literature, especially the water consumption of these plants, in terms of crop evapotranspiration (ETc) and crop coefficient (Kc). The determination of these variables is extremely important for the application of the correct amount of water to irrigated crops in these environments because PM FAO (56) standard methodology was idealized for outdoor environments. The objective of this work was to develop models of estimation of micrometeorological variables in greenhouse conditions and to determine the water demand, in terms of evapotranspiration (ET) and Kc, of the pepper (Capsicum frutescens L.), cv. Tabasco McIlhenny, drip irrigated using drainage lysimeters. The research was carried out in an experimental area located at the University of Sao Paulo (USP) in Piracicaba, SP, Brazil. The following micrometeorological variables were monitored: air temperature, air relative humidity (digital thermohygrometer) and evaporation (mini-pan) (EMT). Drainage lysimeters were used to obtain the ETc and the reference evapotranspiration (ETo) was estimated outside the greenhouse by the Penman Monteith (EToPM), Hargreaves and Samani (EToHS) methods and the class “A” pan method (ECA). It was concluded that the total value of mini-pan evaporation (EMT) inside the greenhouse was practically equal to EToPM, 5% lower than EToHS and 31% higher than ECA in the outdoor environment. ET values ranged from 0.28 to 2.42 mm day-1 and total crop ET was 446.43 mm. The Kc values for the first pepper production cycle were: 0.17 in the initial phase, 0.76 in the flowering and fruiting phase and 0.39 in the harvest phase, for the second production cycle, the value of Kc was 0.50 at the harvest phase.

Publisher

Firenze University Press

Subject

Atmospheric Science,Agronomy and Crop Science,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3