Genotoxic and antigenotoxic potential of encapsulated Enhalus acoroides (L. f.) Royle leaves extract against nickel nitrate

Author:

Pharmawati Made,Wirasiti Ni Nyoman,Wrasiati Luh Putu

Abstract

Several environmental pollutants can cause damage to chromosomes, one of which is the heavy metal NiNO3. Some plant extracts have antigenotoxic properties that result in a decrease in chromosomal damage. Member of flowering plants that need to be tested is seagrass. One seagrass species is Enhalus acoroides which was found to contain phytochemical compounds. This study aimed to analyse the genotoxic effect and the potential of encapsulated E. acoroides leaf extract as antigenotoxic against nickel nitrate NiNO3. The extraction was conducted using a mixture of chloroform and ethanol, and crude extract encapsulated using maltodextrin and tween 80. Chromosomal aberrations were evaluated using the squash technique of Allium cepa var. aggregatum root tips. Triphenyltetrazolium chloride and Evans Blue staining were used to observe mitochondrial and apoptotic activities. The results showed that at higher concentrations (250 ppm and 500 ppm), the encapsulated E. acoroides extract decreased mitotic indices; however, no chromosome aberration observed. NiNO3 itself induced a genotoxic effect as observed by low mitotic index and a high percentage of chromosome aberration. The modulation of NiNO3 effect by adding the encapsulated E. acoroides extract at low concentration (100 ppm) increased mitotic index compared to treatment with Ni alone, but did not reduce chromosome aberration. Simultaneous encapsulated E. acoroides extract and Ni treatment, significantly reduced nuclear fragmentation and nuclear lesion. The encapsulated E. acoroides extract can repair several types of nuclear damage but cannot minimise chromosomal damage.

Publisher

Firenze University Press

Subject

General Agricultural and Biological Sciences,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3