Machine Learning-Based Construction Planning and Forecasting Model

Author:

Keser Ahmet Esat1,Tokdemir Onur Behzat1ORCID

Affiliation:

1. İstanbul Technical University, TR

Abstract

Construction planning and scheduling are crucial aspects of project management that require a lot of time and resources to manage effectively. Machine learning and artificial intelligence techniques have shown great potential in improving construction planning and scheduling by providing more accurate insights into project progress and forecasting. This paper proposed a machine learning model that utilizes regularly updated site data to generate predictions of quantity variances from the plan and enable a more accurate forecast of future progress based on historical data on concrete activities. Also, the outputs of this model can be used when creating a schedule for a new project. New schedules created with the help of this model will be more consistent and reliable due to its vast data pool and ability to generate realistic forecasts from this data. The model utilizes data from completed and other ongoing projects to generate insights and provide a more accurate and efficient construction planning and scheduling solution. Within the scope of this study, different attributes of concrete pouring activities of different projects and locations were used as input data for a machine learning process, and then, using this model on test data, the forecast concrete quantities were obtained. This model provides a more advanced solution than traditional project management tools by incorporating machine learning techniques while significantly improving construction planning, scheduling accuracy, and efficiency, leading to more successful projects and increased profitability for construction companies

Publisher

Firenze University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3