Building Rooftop Analysis for Solar Panel Installation Through Point Cloud Classification - A Case Study of National Taiwan University

Author:

Pal Aritra1ORCID,Chang Yun-Tsui1ORCID,Chen Chien-Wen1,Wu Chen-Hung1ORCID,Kumar Pavan1,Hsieh Shang-Hsien1

Affiliation:

1. National Taiwan University, TW

Abstract

As climate change intensifies, we must embrace renewable solutions like solar energy to combat greenhouse gas emissions. Harnessing the sun's power, solar energy provides a limitless and eco-friendly source of electricity, reducing our reliance on fossil fuels. Rooftops offer prime real estate for solar panel installation, optimizing sun exposure, and maximizing clean energy generation at the point of use. For installing solar panels, inspecting the suitability of building rooftops is essential because faulty roof structures or obstructions can cause a significant reduction in power generation. Computer vision-based methods proved helpful in such inspections in large urban areas. However, previous studies mainly focused on image-based checking, which limits their usability in 3D applications such as roof slope inspection and building height determination required for proper solar panel installation. This study proposes a GIS-integrated urban point cloud segmentation method to overcome these challenges. Specifically, given a point cloud of a metropolitan area, first, it is localized in the GIS map. Then a deep-learning-based point cloud classification model is trained to detect buildings and rooftops. Finally, a rule-based checking determines the building height, roof slopes, and their appropriateness for solar panel installation. While testing at the National Taiwan University campus, the proposed method demonstrates its efficacy in assessing urban rooftops for solar panel installation

Publisher

Firenze University Press

Reference15 articles.

1. Chen, C.C., Chang, Y.T. & Hsieh, S.H. (2023). A Digital Twin Platform Based on 3D Building Models and Smart IoT for A Climate-Resilient Campus: A Case Study of National Taiwan University. 2023 ASCE International Conference on Computing in Civil Engineering (i3CE 2023).

2. Feng, H., Chen, Y., Luo, Z., Sun, W., Li, W., & Li, J. (2022). Automated Extraction of Building Instances from Dual-channel Airborne LiDAR Point Clouds. International Journal of Applied Earth Observation and Geoinformation, 114, 103042.

3. Huang, J., Stoter, J., Peters, R., & Nan, L. (2022). City3D: Large-scale Building Reconstruction from Airborne LiDAR Point Clouds. Remote Sensing, 14(9), 2254.

4. IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

5. Lin, P.H., Chen, C.C., Chang, Y.T. & Hsieh, S.H. (2022). Identifying Obstacles For Solar Panel Installation on Building Rooftops Utilizing Satellite Imagery and Computer Vision Models - A Case Study of National Taiwan University. Proceedings of the 22nd International Conference on Construction Applications of Virtual Reality (CONVR2022), November 16-18, 2022, Seoul, South Korea, 9-15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3