Early Detection and Reconstruction of Abnormal Data Using Hybrid VAE-LSTM Framework

Author:

Hou Fangli1ORCID,Ma Jun2ORCID,Cheng Jack C. P.3ORCID,Kwok Helen H.L.1ORCID

Affiliation:

1. The Hong Kong University of Science and Technology, HK

2. The University of Hong Kong, HK

3. University of Hong KongThe Hong Kong University of Science and Technology, HK

Abstract

Early failure detection and abnormal data reconstruction in sensor data provided by building ventilation control systems are critical for public health. Early detection of abnormal data can help prevent failures in crucial components of ventilation systems, which can result in a variety of issues, from energy wastage to catastrophic outcomes. However, conventional fault detection models ignore valuable features of dynamic fluctuations in indoor air quality (IAQ) measurements and early warning signals of faulty sensor data. This study introduces a hybrid framework for early failure detection and abnormal data reconstruction applying variance analysis and variational autoencoders (VAE) coupled with the long short-term memory network (VAE-LSTM). The periodicity and stable fluctuation of IAQ data are exploited by variance analysis to detect unusual variations before failure occurs. The IAQ dataset which is corrupted by introducing complete failure, bias failure and precision degradation fault is then used to verify the feasibility of the VAE-LSTM model. The results of variance analysis reveal that unusual behavior of the data can be detected as early as 12 hours before failure occurs. The reconstruction performance of the developed method is shown to be superior to other methods under different abnormal data scenarios

Publisher

Firenze University Press

Reference28 articles.

1. Ali, A., & Dağtekin, R. (2008). Early warning signals of the 2000/2001 Turkish financial crisis. International Journal of Emerging and Transition Economies, 1(2), 191-218.

2. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Paper presented at the Proceedings of the 2000 ACM SIGMOD international conference on Management of data.

3. Bu, J., Liu, Y., Zhang, S., Meng, W., Liu, Q., Zhu, X., & Pei, D. (2018). Rapid deployment of anomaly detection models for large number of emerging kpi streams. Paper presented at the 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC).

4. Cao, V. L., Nicolau, M., & McDermott, J. (2016). One-class classification for anomaly detection with kernel density estimation and genetic programming. Paper presented at the Genetic Programming: 19th European Conference, EuroGP 2016, Porto, Portugal, March 30-April 1, 2016, Proceedings 19.

5. Drake, J. M., & Griffen, B. D. (2010). Early warning signals of extinction in deteriorating environments. Nature, 467(7314), 456-459.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3