A Framework for Realistic Virtual Representation for Immersive Training Environments.

Author:

Plumb Caolan1,Pour Rahimian Farzad1ORCID,Pandit Diptangshu1ORCID,Thomas Hannah2,Clark Nigel2

Affiliation:

1. Teesside University, GB

2. The Faraday Centre LTD, GB

Abstract

As mixed-reality (XR) technology becomes more available, virtually simulated training scenarios have shown great potential in enhancing training effectiveness. Realistic virtual representation plays a crucial role in creating immersive experiences that closely mimic real-world scenarios. With reference to previous methodological developments in the creation of information-rich digital reconstructions, this paper proposes a framework encompassing key components of the 3D scanning pipeline. While 3D scanning techniques have advanced significantly, several challenges persist in the field. These challenges include data acquisition, noise reduction, mesh and texture optimisation, and separation of components for independent interaction. These complexities necessitate the search for an optimised framework that addresses these challenges and provides practical solutions for creating realistic virtual representations in immersive training environments. The following exploration acknowledges and addresses challenges presented by the photogrammetry and laser-scanning pipeline, seeking to prepare scanned assets for real-time virtual simulation in a games-engine. This methodology employs both a camera and handheld laser-scanner for accurate data acquisition. Reality Capture is used to combine the geometric data and surface detail of the equipment. To clean the scanned asset, Blender is used for mesh retopology and reprojection of scanned textures, and attention given to correct lighting details and normal mapping, thus preparing the equipment to be interacted with by Virtual Reality (VR) users within Unreal Engine. By combining these elements, the proposed framework enables realistic representation of industrial equipment for the creation of training scenarios that closely resemble real-world contexts

Publisher

Firenze University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3