Profiling students’ satisfaction towards university courses with a latent class approach

Author:

Costanzo G. Damiana1ORCID,Misuraca Michelangelo1ORCID,Coscarelli Angela1

Affiliation:

1. University of Calabria, IT

Abstract

Collecting and analysing students’ opinions towards the learning experiences lived during their enrolment in an academic program is widely recognised as a key strategy to evaluate tertiary education quality. Academic institutions require students to participate every year in specific surveys, aiming at gathering their viewpoint about the organisation of the single courses, and the feelings about the traits and the effectiveness of the teaching activity. In the Italian university system, the surveys about students’ satisfaction are realised in accordance with the guidelines of the National Agency for the Evaluation of Universities and Research Institutes. Here we propose the implementation of a latent class analytical strategy to profile the satisfaction of students at a course level, taking into account the interest about each course, and the perceptions about the course organisation and the instructor performance. Since the items listed in the survey are expressed as 4-point balanced scales, we used the so-called Latent Profile Analysis (LPA) to identify unobserved clusters of courses (i.e., latent profiles) based on the responses of students to the continuous indicators concerning the different aspect related to course satisfaction. Differently from clustering approaches based on distance functions, LPA is a probabilistic model, which means that it models the probability of case belonging to a profile. An application of the strategy to the first-year courses delivered at the University of Calabria (Italy) in the academic year 2020/2021, during the second and third waves of the COVID-19 pandemic in Italy, is used to show the effectiveness of the approach.

Publisher

Firenze University Press and Genova University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3