An experimental annotation task to investigate annotators’ subjectivity in a Misogyny dataset

Author:

Tontodimamma Alice1,Anzani Stefano1ORCID,Stranisci Marco Antonio2ORCID,Basile Valerio2ORCID,Ignazzi Elisa1,Fontanella Lara1ORCID

Affiliation:

1. University of Chieti-Pescara G. D'Annunzio, IT

2. University of Turin, IT

Abstract

In recent years, hatred directed against women has spread exponentially, especially in online social media. Although this alarming phenomenon has given rise to many studies both from the viewpoint of computational linguistics and from that of machine learning, less effort has been devoted to analysing whether models for the detection of misogyny are affected by bias. An emerging topic that challenges traditional approaches for the creation of corpora is the presence of social bias in natural language processing (NLP). Many NLP tasks are subjective, in the sense that a variety of valid beliefs exist about what the correct data labels should be; some tasks, for example misogyny detection, are highly subjective, as different people have very different views about what should or should not be labelled as misogynous. An increasing number of scholars have proposed strategies for assessing the subjectivity of annotators, in order to reduce bias both in computational resources and in NLP models. In this work, we present two corpora: a corpus of messages posted on Twitter after the liberation of Silvia Romano on the 9th of May, 2020 and corpus of comments constructed starting from posts on Facebook that contained misogyny, developed through an experimental annotation task, to explore annotators’ subjectivity. For a given comment, the annotation procedure consists in selecting one or more chunk from each text that is regarded as misogynistic and establishing whether a gender stereotype is present. Each comment is annotated by at least three annotators in order to better analyse their subjectivity. The annotation process was carried by trainees who are engaged in an internship program. We propose a qualitative-quantitative analysis of the resulting corpus, which may include non-harmonised annotations.

Publisher

Firenze University Press and Genova University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3