Exploring competitiveness and wellbeing in Italy by spatial principal component analysis

Author:

Cusatelli Carlo1ORCID,Giacalone Massimiliano2ORCID,Nissi Eugenia3ORCID

Affiliation:

1. University of Bari Aldo Moro, IT

2. University of Naples Federico II, IT

3. Gabriele d’Annunzio University, IT

Abstract

Well being is a multidimensional phenomenon, that cannot be measured by a single descriptive indicator and that, it should be represented by multiple dimensions. It requires, to be measured by combination of different dimensions that can be considered together as components of the phenomenon. This combination can be obtained by applying methodologies knows as Composite Indicators (CIs). CIs are largely used to have a comprehensive view on a phenomenon that cannot be captured by a single indicator. Principal Component Analysis (PCA) is one of the most popular multivariate statistical technique used for reducing data with many dimension, and often well being indicators are obtained using PCA. PCA is implicitly based on a reflective measurement model that it non suitable for all types of indicators. Mazziotta and Pareto (2013) in their paper discuss the use and misuse of PCA for measuring well-being. The classical PCA is not suitable for data collected on the territory because it does not take into account the spatial autocorrelation present in the data. The aim of this paper is to propose the use of Spatial Principal Component Analysis for measuring well being in the Italian Provinces.

Publisher

Firenze University Press

Reference14 articles.

1. Allardt, E. (1981). Experiences from the comparative Scandinavian study, with a bibliography of the project. European Journal of Political Research, 9, pp. 101-111.

2. Andrews, F., Szalai A. (1980). Quality of life: comparative studies, Sage, London, (UK). Bowley, A. (1923). The nature and the purposes of the measurement of social phenomena. P.S. King & Son Ltd., London, (UK).

3. Bureau International du Travail – BIT (1926). Les méthodes d'enquête sur les budgets familiaux, Etudes et Documents, Série N, 9, Genève, (CH).

4. Christian, D.E. (1974). International social indicators: the OECD experience. Social Indicators Research, 1974, 1, pp. 169-186.

5. Engel, E. (1887). La consommation comme mesure du bien-être des individus, des familles, des nations, in Bulletin de l'Institut International de Statistique, Tome II, Héritiers Botta, Roma, (IT).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3