Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant hereditary tumor syndrome with a prevalence of 1:3000 in human population. About 50% of NF1 cases are sporadic due to newly emerging germline mutations in NF1 gene. Protein product of NF1 is a neurofibromin, which inhibits RAS-RAF-MEK-ERK system. The prevalence of NF1 is increasing as patients are fertile. Therefore, it is important to use rapid diagnostic methods for NF1 mutations in NF1 families for prenatal prophylaxis. Mutations in NF1 gene play roles in sporadic carcinogenesis and in development of cancer resistance to chemotherapy. Specific for NF1 are multiple subcutaneous and cutaneous neurofibromas, age spots, skeletal abnormalities, mental retardation, tumors of the brain and optic nerves. Half of patients with NF1 develop plexiform neurofibromas, which disfigure them or compress vital organs. The difficulty in treating NF1 is due to involvement of immune system, since a large number of degranulating mast cells are found in neurofibromas. Mast cells secrete cytokines that dont provide a proper anti-tumor immune response, but initiate formation and growth of new neurofibromas. Therefore, long-term administration of ketotiphen was proposed for treatment of NF1 patients. Surgical removal of neurofibromas causes relapses and induction of the growth of new tumors; therefore, it is necessary to develop an effective therapy for NF1. The effectiveness of complex therapy of NF1 with use of ketotiphen, Lydase and Aevit, as well as monotherapy with an ATP-independent inhibitor of mitogen-activated protein kinase, has been described. For widespread clinical implementation of these methods, it is necessary to conduct studies on large sample of patients, as well as to make medicines available for patients. Gene therapy may become promising in the treatment of NF1, which requires identification of the type of mutation in NF1 gene in each individual and the use of specific microRNAs.