Abstract
Background. Transferrin receptor 1 (TfR1) expression has been identified in a number of malignant tumors. It is noted that its overexpression gives growth advantages to cancer cells. Estimation of transferrin receptor expression in breast cancer (BC) might be an important component in disease prognosis, choice of treatment, also might be an attractive target for targeted therapy.
Aim. To evaluate the expression of TfR1 by BC cells and to study its relationship with the clinical, morphological and immunophenotypic characteristics of the tumor.
Materials and methods. This study included 82 patients with BC who received treatment at the Blokhin National Medical Research Center of Oncology (Moscow). The expression of TfR1 on primary tumor cells was studied, the relationship of TfR1 with clinical, morphological and immunophenotypic characteristics of BC was analyzed. Immunophenotyping of the primary tumor was performed by the immunohistochemical method (immunofluorescent staining) on cryostat sections. Antibodies to CD71, CD95, CD54, CD29, MUC1, Pgp170 were used. The reaction was evaluated using a luminescent microscope (AXIOSKOP, Germany). The study was dominated by patients with stage IIB 54% and IIIB 21%. Infiltrative ductal BC was diagnosed in 67% (n=55) of patients, infiltrative-lobular in 22% (n=18) of cases, other types in 11.0% (n=9).
Results. BC cells expressed TfR1 in most cases (64.4%; n=61). A combination of TfR1 monomorphic expression with MUC1 monomorphic expression (74.4%; n=47) was noted. CD29 is presented both mosaic (38.7%) and monomorphic (51.6%). The Pgp170 antigen was monomorphically observed in 27.5% of cases. As the proportion of TfR+ cells increased, the expression frequency of the adhesion molecule CD54 increased from 10.5 to 33.3%, a positive correlation was established (r=0.293; p=0.008). In the group with TfR1 monomorphic expression, the frequency of tumors expressing the CD95 apoptosis molecule decreased: 25.0% vs 13% (p=0.042).
Conclusion. BC cells overexpress TfR1. TfR1 expression is associated with tumor immunophenotype.
Reference31 articles.
1. Global Cancer Statistics 2020. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. Accessed: 24.08.2022.
2. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
3. The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis
4. Рябчиков Д.А., Абдуллаева Э.И., Дудина И.А., и др. Роль микро-РНК в канцерогенезе и прогнозе злокачественных новообразований молочной железы. Вестник Российского научного центра рентгенорадиологии. 2018;18(2):5 [Ryabchikov DA, Abdullaeva EI, Dudina IA, et al. The role of micro-RNA in cancerogenesis and breast cancer prognosis. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii. 2018;18(2):5 (in Russian)].
5. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献