The role of computed tomographic sarcometry data using machine learning technologies in predicting postoperative outcomes in patients with gastric cancer

Author:

Kukarskaia Valeriia A.ORCID,Agababyan Tatev A.ORCID

Abstract

Background. Sarcopenia is a negative prognostic factor in cancer patients. This is important in patients at high risk of developing nutritional deficiency. Determination of the skeletal muscle index (SMI) with the help of computed tomography (CT) the method of choice to is diagnostics of sarcopenia. However, the clinical use of CT is limited by the increased time required to manually measure muscle mass from CT-images. Aim. To improve the use of CT sarcometry at the preoperative stage of combined treatment in patients with gastric cancer to stratify the risk of postoperative complications using the developed software assistant. Materials and methods. At the first stage, a “dataset” was created. It contained 207 CT images. It was used to train a muscle tissue segmentation model. The Dice’s similarity coefficient was achieved at a value of 0.91 on a small training set. At the second stage of the study analyzed the incidence of sarcopenia in the examined patients before neoadjuvant chemotherapy and immediately before gastrectomy; 41 (63%) of 65 patients had sarcopenia in the study group and in 50 (77%) patients after neoadjuvant chemotherapy. Postoperative complications were diagnosed in 12 (19%) of 65 patients. There was no correlation between the frequency of their occurrence and the muscular status of patients (p=0.392), however severe complications (≥IIIb according to the Clavien–Dindo classification) were detected only in the group of patients with sarcopenia (p0.001). Results. As a result, preoperative sarcopenia is a negative factor in the development of severe postoperative complications in patients with gastric cancer who have undergone gastrectomy. The introduction of deep learning technologie to clinical practice can facilitate the assessment of muscle tissue parameters in patients with cancer.

Publisher

Consilium Medicum

Reference15 articles.

1. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022 [Zlokachestvennyie novoobrazovaniia v Rossii v 2021 godu (zabolevaiemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, AO Shakhzadovoi. Moscow: MNIOI im. PA Gertsena − filial FGBU “NMITS radiologii” Minzdrava Rossii, 2022 (in Russian)].

2. Sarcopenia: revised European consensus on definition and diagnosis

3. Clinical Impact of Sarcopenia on Gastric Cancer

4. Sarcopenia, sarcopenic obesity, myosteatosis as factors of poor prognosis in gastrointestinal tract tumors: review

5. Patient optimization for gastrointestinal cancer surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3