Abstract
Aim. Conducting a pilot study to assess the effect of thermal heliox on the state of the respiratory tract by studying of the exhaled breath condensate protein composition before the thermal heliox procedure, immediately after and after three hours of relaxation
Materials and methods. A comparative study of the exhaled breath condensates (EBC) protein composition of five non-smoking healthy donors was carried out. The EBC was taken before the respiratory procedure, immediately after a 20-minute inhalation by mixture of He/O2 gases (70/30) heated to 70C and 3 hours later. The protein composition was determined by chromatography-mass spectrometric analysis after selective tryptic hydrolysis. The results were processed using the Mascot program and the UniProt database.
Results. After the heliox procedure, the volume of the collected condensate (11.5 ml) decreases by an average of 32% and is practically restored after three hours of relaxation. Most proteins were consistent for all samples, regardless of the thermal heliox procedure. These are keratins, several proteins of the immune system (immunoglobulins, compliment proteins), tubulin. In samples after thermal heliox, the appearance of small amounts of additional proteins is observed. These are proteins of muscle metabolism (actin and calmodulin), fibrinogen, traces of hemoglobin, apolipoprotein, type B creatine kinase. After three hours of relaxation, tubulin disappears in the EBC.
Conclusion. Most exhaled proteins are the same before, after the procedure, and for three hours of relaxation. The results obtained demonstrate the relative safety of the use of high temperature heliox as a therapeutic agent.
Subject
General Medicine,Endocrinology, Diabetes and Metabolism,History,Family Practice
Reference15 articles.
1. Effect of t-???2 on Central hemodynamics and oxygen transport in patients with COPD exacerbation and acute respiratory failure
2. Efficacy and safety of thermic helium-oxygen (t-He/O2) mixture in reducing hypoxemia in acute ischemic stroke patients
3. Варфоломеев С.Д., Панин А.А., Быков В.И. и др. Кинетическая модель развития острой вирусной инфекции в организме человека. Критические условия, механизмы управления, «термогелиокс». Вестн. Акад. наук. Сер. химическая. 2020;6:1-6 [Varfolomeev SD, Panin AA, Bykov VI, et al. Kineticheskaia model’ razvitiia ostroi virusnoi infektsii v organizme cheloveka. Kriticheskie usloviia, mekhanizmy upravleniia, «termogelioks». Vestn. Akad. nauk. Ser. khimicheskaia. 2020;6:1-6 (In Russ.)].
4. Варфоломеев С.Д., Панин А.А., Быков В.И., Цебенова С.Б. Термовакцинация, термогелиокс как стимулятор иммунного ответа. Кинетическая модель развития процесса. Известия Акад. наук. Сер. химическая. 2020 (в печати) [Varfolomeev SD, Panin AA, Bykov VI, Tsebenova SB. Termovaktsinatsiia, termogelioks kak stimuliator immunnogo otveta. Kineticheskaia model’ razvitiia protsessa. Izvestiia Akad. nauk. Ser. khimicheskaia. 2020 (In Russ.)].
5. COMPARATIVE PROTEOMIC ANALYSIS OF EXHALED BREATH CONDENSATE IN PATIENTS WITH LUNG CARCINOMA USING HIGH RESOLUTION MASS-SPECTROMETRY
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献