Neural networks in the predictive diagnosis of cognitive impairment in type 1 and type 2 diabetes mellitus

Author:

Samoilova Iuliia G.ORCID,Matveeva Mariia V.ORCID,Kudlay Dmitrii A.ORCID,Tonkikh Olga S.ORCID,Tolmachev Ivan V.ORCID

Abstract

Background. Cognitive dysfunction, including mild cognitive impairment and dementia, is increasingly recognized as a serious complication of diabetes mellitus (DM) that affects patient well-being and disease management. Magnetic resonance imaging (MRI)-studies have shown varying degrees of cortical atrophy, cerebral infarcts, and deep white matter lesions. To explain the relationship between DM and cognitive decline, several hypotheses have been proposed, based on the variability of glycemia leading to morphometric changes in the brain. The ability to predict cognitive decline even before its clinical development will allow the early prevention of this pathology, as well as to predict the course of the existing pathology and to adjust medication regimens. Aim. To create a computer neural network model for predicting the development of cognitive impairment in DM on the basis of brain neuroimaging techniques. Materials and methods. The study was performed in accordance with the standards of good clinical practice; the protocol was approved by the Ethics Committee. The study included 85 patients with type 1 diabetes and 95 patients with type 2 diabetes, who were divided into a group of patients with normal cognitive function and a group with cognitive impairment. The patient groups were comparable in age and duration of disease. Cognitive impairment was screened using the Montreal Cognitive Assessment Scale. Data for glycemic variability were obtained using continuous glucose monitoring (iPro2, Libre). A standard MRI scan of the brain was performed axially, sagittally, and coronally on a Signa Creator E, GE Healthcare, 1.5 Tesla, China. For MRI data processing we used Free Surfer program (USA) for analysis and visualization of structural and functional neuroimaging data from cross-sectional or longitudinal studies, and for segmentation we used Recon-all batch program directly. All statistical analyses and data processing were performed using Statistica Statsofi software (version 10) on Windows 7/XP Pro operating systems. The IBM WATSON cognitive system was used to build a neural network model. Results. As a result of the study, cognitive impairment in DM type 1was predominantly of mild degree 36.9% (n=24) and moderate degree 30.76% (n=20), and in DM type 2 mild degree 37% (n=30), moderate degree 49.4% (n=40) and severe degree 13.6% (n=11). Cognitive functions in DM type 1 were impaired in memory and attention, whereas in DM type 2 they were also impaired in tasks of visual-constructive skills, fluency, and abstraction (p0.001). The analysis revealed differences in glycemic variability indices in patients with type 1 and type 2 DM and cognitive impairment. Standard MRI of the brain recorded the presence of white and gray matter changes (gliosis and leukoareosis). General and regional cerebral atrophy is characteristic of type 1 and type 2 DM, which is associated with dysglycemia. When building neural network models for type 1 diabetes, the parameters of decreased volumes of the brain regions determine the development of cognitive impairment by 93.5%, whereas additionally, the coefficients of glycemic variability by 98.5%. The same peculiarity was revealed in type 2 DM 95.3% and 97.9%, respectively. Conclusion. In DM type 1 and type 2 with cognitive impairment, elevated coefficients of glycemic variability are more frequently recorded. This publication describes laboratory and instrumental parameters as potential diagnostic options for effective management of DM and prevention of cognitive impairment. Neural network models using glycemic variability coefficients and MR morphometry allow for predictive diagnosis of cognitive disorders in both types of diabetes.

Publisher

Consilium Medicum

Subject

General Medicine,Endocrinology, Diabetes and Metabolism,History,Family Practice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3