HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm

Author:

Flajolet Philippe,Fusy Éric,Gandouet Olivier,Meunier Frédéric

Abstract

International audience This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to estimating the number of \emphdistinct elements (the cardinality) of very large data ensembles. Using an auxiliary memory of m units (typically, "short bytes''), HYPERLOGLOG performs a single pass over the data and produces an estimate of the cardinality such that the relative accuracy (the standard error) is typically about $1.04/\sqrt{m}$. This improves on the best previously known cardinality estimator, LOGLOG, whose accuracy can be matched by consuming only 64% of the original memory. For instance, the new algorithm makes it possible to estimate cardinalities well beyond $10^9$ with a typical accuracy of 2% while using a memory of only 1.5 kilobytes. The algorithm parallelizes optimally and adapts to the sliding window model.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Subject

Discrete Mathematics and Combinatorics,General Computer Science,Theoretical Computer Science

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MpScope: Enabling multi-pipeline monitoring inside a switch;Computer Networks;2024-12

2. Multi-source data integration for explainable miRNA-driven drug discovery;Future Generation Computer Systems;2024-11

3. CardSketch: Shift Attention for Network-wide Cardinality Telemetry;2024 IEEE 49th Conference on Local Computer Networks (LCN);2024-10-08

4. QSketch: An Efficient Sketch for Weighted Cardinality Estimation in Streams;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. SAROS: A Self-Adaptive Routing Oblivious Sampling Method for Network-wide Heavy Hitter Detection;Proceedings of the 8th Asia-Pacific Workshop on Networking;2024-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3