Named Entity Recognition in Low-resource Languages using Cross-lingual distributional word representation

Author:

Melatagia Yonta Paulin,Mbouopda Michael Franklin

Abstract

International audience Named Entity Recognition (NER) is a fundamental task in many NLP applications that seek to identify and classify expressions such as people, location, and organization names. Many NER systems have been developed, but the annotated data needed for good performances are not available for low-resource languages, such as Cameroonian languages. In this paper we exploit the low frequency of named entities in text to define a new suitable cross-lingual distributional representation for named entity recognition. We build the first Ewondo (a Bantu low-resource language of Cameroon) named entities recognizer by projecting named entity tags from English using our word representation. In terms of Recall, Precision and F-score, the obtained results show the effectiveness of the proposed distributional representation of words La reconnaissance des entités nommées (REN) est une tâche fondamentale du TALN dont le but est d'identifier les expressions telles que les noms de personnes, de lieux et d'organisations dans un texte. Il existe de nos jours plusieurs systèmes de REN, cependant les données nécessaires pour les utiliser dans le traitement des langues peu dotées telles que les langues camerounaises ne sont pas disponibles. Nous exploitons le fait que les entités nommées apparaissent rarement dans les textes pour définir une nouvelle représentation distributionnelle interlingue des mots, qui soit adaptée à la REN. En utilisant notre représentation, nous projectons les entités nommées de l'anglais vers l'ewondo (une langue bantou du Cameroun); nous obtenons donc le tout premier modèle de reconnaissance des entités nommées en langue ewondo. Les résultats en terme de précision, rappel et f-mesure montrent l'efficacité de notre représentation

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-named Entities – The Silent Majority;The Semantic Web: ESWC 2021 Satellite Events;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3