Some remarks on the mean value of the riemann zeta-function and other Dirichlet series-II

Author:

Ramachandra K

Abstract

International audience This is a sequel (Part II) to an earlier article with the same title. There are reasons to expect that the estimates proved in Part I without the factor $(\log\log H)^{-C}$ represent the real truth, and this is indeed proved in part II on the assumption that in the first estimate $2k$ is an integer. %This is of great interest, for little has been known on the mean value of $\vert\zeta(\frac{1}{2}+it)\vert^k$ for odd $k$, say $k=1$; for even $k$, see the book by E. C. Titchmarsh [The theory of the Riemann zeta function, Clarendon Press, Oxford, 1951, Theorem 7.19]. The proofs are based on applications of classical function-theoretic theorems, together with mean value theorems for Dirichlet polynomials or series. %In the case of the zeta function, the principle is to write $\vert\zeta(s)\vert^k=\vert\zeta(s)^{k/2}\vert^2$, where $\zeta(s)^{k/2}$ is related to a rapidly convergent series which is essentially a partial sum of the Dirichlet series of $\zeta(s)^{k/2}$, convergent in the half-plane $\sigma>1$.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Negative moments of the Riemann zeta-function;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-06

2. Moments of moments of primes in arithmetic progressions;Proceedings of the London Mathematical Society;2023-06-18

3. Moments of the Hurwitz zeta function on the critical line;Mathematical Proceedings of the Cambridge Philosophical Society;2022-11-28

4. Maxima of log-correlated fields: some recent developments*;Journal of Physics A: Mathematical and Theoretical;2022-01-11

5. Lower bounds for moments of zeta and L$L$‐functions revisited;Mathematika;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3