Data Mining on Social Interaction Networks

Author:

Atzmueller Martin

Abstract

Social media and social networks have already woven themselves into the very fabric of everyday life. This results in a dramatic increase of social data capturing various relations between the users and their associated artifacts, both in online networks and the real world using ubiquitous devices. In this work, we consider social interaction networks from a data mining perspective - also with a special focus on real-world face-to-face contact networks: We combine data mining and social network analysis techniques for examining the networks in order to improve our understanding of the data, the modeled behavior, and its underlying emergent processes. Furthermore, we adapt, extend and apply known predictive data mining algorithms on social interaction networks. Additionally, we present novel methods for descriptive data mining for uncovering and extracting relations and patterns for hypothesis generation and exploration, in order to provide characteristic information about the data and networks. The presented approaches and methods aim at extracting valuable knowledge for enhancing the understanding of the respective data, and for supporting the users of the respective systems. We consider data from several social systems, like the social bookmarking system BibSonomy, the social resource sharing system flickr, and ubiquitous social systems: Specifically, we focus on data from the social conference guidance system Conferator and the social group interaction system MyGroup. This work first gives a short introduction into social interaction networks, before we describe several analysis results in the context of online social networks and real-world face-to-face contact networks. Next, we present predictive data mining methods, i.e., for localization, recommendation and link prediction. After that, we present novel descriptive data mining methods for mining communities and patterns.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Conceptual Framework for Applying Social Signal Processing to Neuro-Tourism;Tourism, Travel, and Hospitality in a Smart and Sustainable World;2023

2. Application of Data Mining System in User Network Environment Based on SVM Optimization Algorithm;Mobile Information Systems;2022-10-06

3. Onto Model-based Anomalous Link Pattern Mining on Feature-Rich Social Interaction Networks;Companion Proceedings of The 2019 World Wide Web Conference;2019-05-13

4. Analyzing group interaction and dynamics on socio-behavioral networks of face-to-face proximity;Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct;2016-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3