Computability of Data-Word Transductions over Different Data Domains

Author:

Exibard Léo,Filiot Emmanuel,Lhote Nathan,Reynier Pierre-Alain

Abstract

In this paper, we investigate the problem of synthesizing computable functions of infinite words over an infinite alphabet (data $\omega$-words). The notion of computability is defined through Turing machines with infinite inputs which can produce the corresponding infinite outputs in the limit. We use non-deterministic transducers equipped with registers, an extension of register automata with outputs, to describe specifications. Being non-deterministic, such transducers may not define functions but more generally relations of data $\omega$-words. In order to increase the expressive power of these machines, we even allow guessing of arbitrary data values when updating their registers. For functions over data $\omega$-words, we identify a sufficient condition (the possibility of determining the next letter to be outputted, which we call next letter problem) under which computability (resp. uniform computability) and continuity (resp. uniform continuity) coincide. We focus on two kinds of data domains: first, the general setting of oligomorphic data, which encompasses any data domain with equality, as well as the setting of rational numbers with linear order; and second, the set of natural numbers equipped with linear order. For both settings, we prove that functionality, i.e. determining whether the relation recognized by the transducer is actually a function, is decidable. We also show that the so-called next letter problem is decidable, yielding equivalence between (uniform) continuity and (uniform) computability. Last, we provide characterizations of (uniform) continuity, which allow us to prove that these notions, and thus also (uniform) computability, are decidable. We even show that all these decision problems are PSpace-complete for $(\mathbb{N},<)$ and for a large class of oligomorphic data domains, including for instance $(\mathbb{Q},<)$.

Funder

French National Research Agency

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3