Geometric Model Checking of Continuous Space

Author:

Bezhanishvili NickORCID,Ciancia Vincenzo,Gabelaia David,Grilletti Gianluca,Latella Diego,Massink Mieke

Abstract

Topological Spatial Model Checking is a recent paradigm where model checking techniques are developed for the topological interpretation of Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that, in turn, can be used for expressing interesting spatial properties, such as "being near to" or "being surrounded by". SLCS constitutes the kernel of a solid logical framework for reasoning about discrete space, such as graphs and digital images, interpreted as quasi discrete closure spaces. Following a recently developed geometric semantics of Modal Logic, we propose an interpretation of SLCS in continuous space, admitting a geometric spatial model checking procedure, by resorting to models based on polyhedra. Such representations of space are increasingly relevant in many domains of application, due to recent developments of 3D scanning and visualisation techniques that exploit mesh processing. We introduce PolyLogicA, a geometric spatial model checker for SLCS formulas on polyhedra and demonstrate feasibility of our approach on two 3D polyhedral models of realistic size. Finally, we introduce a geometric definition of bisimilarity, proving that it characterises logical equivalence.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Subject

General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A toolchain for strategy synthesis with spatial properties;International Journal on Software Tools for Technology Transfer;2023-11-02

2. A Spatial Logic for Simplicial Models;Logical Methods in Computer Science;2023-07-26

3. On Bisimilarity for Polyhedral Models and SLCS;Formal Techniques for Distributed Objects, Components, and Systems;2023

4. On Binding in the Spatial Logics for Closure Spaces;Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3