Verifying liquidity of recursive Bitcoin contracts

Author:

Bartoletti Massimo,Lande Stefano,Murgia MaurizioORCID,Zunino Roberto

Abstract

Smart contracts - computer protocols that regulate the exchange of crypto-assets in trustless environments - have become popular with the spread of blockchain technologies. A landmark security property of smart contracts is liquidity: in a non-liquid contract, it may happen that some assets remain frozen, i.e. not redeemable by anyone. The relevance of this issue is witnessed by recent liquidity attacks to Ethereum, which have frozen hundreds of USD millions. We address the problem of verifying liquidity on BitML, a DSL for smart contracts with a secure compiler to Bitcoin, featuring primitives for currency transfers, contract renegotiation and consensual recursion. Our main result is a verification technique for liquidity. We first transform the infinite-state semantics of BitML into a finite-state one, which focusses on the behaviour of a chosen set of contracts, abstracting from the moves of the context. With respect to the chosen contracts, this abstraction is sound, i.e. if the abstracted contract is liquid, then also the concrete one is such. We then verify liquidity by model-checking the finite-state abstraction. We implement a toolchain that automatically verifies liquidity of BitML contracts and compiles them to Bitcoin, and we assess it through a benchmark of representative contracts.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Subject

General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure compilation of rich smart contracts on poor UTXO blockchains;2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P);2024-07-08

2. Liquidity analysis in resource-aware programming;Journal of Logical and Algebraic Methods in Programming;2023-10

3. Liquidity Analysis in Resource-Aware Programming;Formal Aspects of Component Software;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3