Affiliation:
1. Laboratoire Énergies et Mécanique Théorique et Appliquée
2. Laboratoire Cogitamus
Abstract
Finite Element codes used for solving the mechanical equilibrium equations in transient problems associated to (time-dependent) viscoelastic media generally relies on time-discretized versions of the selected constitutive law. Recent concerns about the use of non-integer differential equations to describe viscoelasticity or well-founded ideas based upon the use of a behavior's law directly derived from Dynamic Mechanical Analysis (DMA) experiments in frequency domain, could make the Laplace domain approach particularly attractive if embedded in a time discretized scheme. Based upon the inversion of Laplace transforms, this paper shows that this aim is not only possible but also gives rise to a simple algorithm having good performances in terms of computation times and precision. Such an approach, which fully relies on the Laplace-defined Behavioral Transfer Function (LTBF) can be promoted if it uses AutoRegressive with eXogeneous input parametric models perfectly substitutable to the real LTBF. They avoid the hitherto prohibitive pitfall of having to store all past data in the computer's memory while maintaining an equal computation precision.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)