Processing the structure of documents: Logical Layout Analysis of historical newspapers in French

Author:

Gutehrlé Nicolas,Atanassova Iana

Abstract

Background. In recent years, libraries and archives led important digitisation campaigns that opened the access to vast collections of historical documents. While such documents are often available as XML ALTO documents, they lack information about their logical structure. In this paper, we address the problem of Logical Layout Analysis applied to historical documents in French. We propose a rule-based method, that we evaluate and compare with two Machine-Learning models, namely RIPPER and Gradient Boosting. Our data set contains French newspapers, periodicals and magazines, published in the first half of the twentieth century in the Franche-Comt\'e Region. Results. Our rule-based system outperforms the two other models in nearly all evaluations. It has especially better Recall results, indicating that our system covers more types of every logical label than the other two models. When comparing RIPPER with Gradient Boosting, we can observe that Gradient Boosting has better Precision scores but RIPPER has better Recall scores. Conclusions. The evaluation shows that our system outperforms the two Machine Learning models, and provides significantly higher Recall. It also confirms that our system can be used to produce annotated data sets that are large enough to envisage Machine Learning or Deep Learning approaches for the task of Logical Layout Analysis. Combining rules and Machine Learning models into hybrid systems could potentially provide even better performances. Furthermore, as the layout in historical documents evolves rapidly, one possible solution to overcome this problem would be to apply Rule Learning algorithms to bootstrap rule sets adapted to different publication periods.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3