Abstract
Tennenbaum's theorem states that the only countable model of Peano arithmetic
(PA) with computable arithmetical operations is the standard model of natural
numbers. In this paper, we use constructive type theory as a framework to
revisit, analyze and generalize this result. The chosen framework allows for a
synthetic approach to computability theory, exploiting that, externally, all
functions definable in constructive type theory can be shown computable. We
then build on this viewpoint, and furthermore internalize it by assuming a
version of Church's thesis, which expresses that any function on natural
numbers is representable by a formula in PA. This assumption provides for a
conveniently abstract setup to carry out rigorous computability arguments, even
in the theorem's mechanization. Concretely, we constructivize several classical
proofs and present one inherently constructive rendering of Tennenbaum's
theorem, all following arguments from the literature. Concerning the classical
proofs in particular, the constructive setting allows us to highlight
differences in their assumptions and conclusions which are not visible
classically. All versions are accompanied by a unified mechanization in the Coq
proof assistant.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)